Step
*
1
1
of Lemma
isolate_summand
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. ∀[m:ℕn - 1]. (Σ(f[x] | x < n - 1) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n - 1)) ∈ ℤ)
4. f : ℕn ⟶ ℤ
5. ∀[m:ℕn - 1]. (Σ(f[x] | x < n - 1) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n - 1)) ∈ ℤ)
6. m : ℕn
7. m = (n - 1) ∈ ℤ
⊢ Σ(f[x] | x < n) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n)) ∈ ℤ
BY
{ ((HypSubstSq (-1) 0) THEN (RWO "sum-unroll" 0 THENA Auto) THEN AutoSplit) }
1
1. n : ℤ
2. 0 < n
3. ∀[f:ℕn - 1 ⟶ ℤ]. ∀[m:ℕn - 1]. (Σ(f[x] | x < n - 1) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n - 1)) ∈ ℤ)
4. f : ℕn ⟶ ℤ
5. ∀[m:ℕn - 1]. (Σ(f[x] | x < n - 1) = (f[m] + Σ(if (x =z m) then 0 else f[x] fi | x < n - 1)) ∈ ℤ)
6. m : ℕn
7. m = (n - 1) ∈ ℤ
8. 0 < n
⊢ (Σ(f[x] | x < n - 1) + f[n - 1]) = (f[n - 1] + Σ(if (x =z n - 1) then 0 else f[x] fi | x < n - 1) + 0) ∈ ℤ
Latex:
Latex:
1. n : \mBbbZ{}
2. 0 < n
3. \mforall{}[f:\mBbbN{}n - 1 {}\mrightarrow{} \mBbbZ{}]. \mforall{}[m:\mBbbN{}n - 1].
(\mSigma{}(f[x] | x < n - 1) = (f[m] + \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n - 1)))
4. f : \mBbbN{}n {}\mrightarrow{} \mBbbZ{}
5. \mforall{}[m:\mBbbN{}n - 1]. (\mSigma{}(f[x] | x < n - 1) = (f[m] + \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n - 1)))
6. m : \mBbbN{}n
7. m = (n - 1)
\mvdash{} \mSigma{}(f[x] | x < n) = (f[m] + \mSigma{}(if (x =\msubz{} m) then 0 else f[x] fi | x < n))
By
Latex:
((HypSubstSq (-1) 0) THEN (RWO "sum-unroll" 0 THENA Auto) THEN AutoSplit)
Home
Index