Step
*
1
2
2
1
3
of Lemma
sum-unroll
1. f : Base
2. n : Base
3. (n ∈ ℤ)
⇒ (Σ(f[x] | x < n) ~ if (0) < (n) then Σ(f[x] | x < n - 1) + f[n - 1] else 0)
4. is-exception(if (0) < (n) then eval v' = f[0] + 0 in eval i' = 0 + 1 in sum_aux(n;v';i';x.f[x]) else 0)
5. is-exception(0)
⊢ Σ(f[x] | x < n) ≤ if (0) < (n) then Σ(f[x] | x < n - 1) + f[n - 1] else 0
BY
{ TACTIC:(FLemma `exception-not-value` [-1] THEN Auto) }
Latex:
Latex:
1. f : Base
2. n : Base
3. (n \mmember{} \mBbbZ{}) {}\mRightarrow{} (\mSigma{}(f[x] | x < n) \msim{} if (0) < (n) then \mSigma{}(f[x] | x < n - 1) + f[n - 1] else 0)
4. is-exception(if (0) < (n)
then eval v' = f[0] + 0 in
eval i' = 0 + 1 in
sum\_aux(n;v';i';x.f[x])
else 0)
5. is-exception(0)
\mvdash{} \mSigma{}(f[x] | x < n) \mleq{} if (0) < (n) then \mSigma{}(f[x] | x < n - 1) + f[n - 1] else 0
By
Latex:
TACTIC:(FLemma `exception-not-value` [-1] THEN Auto)
Home
Index