Nuprl Lemma : apply_alist-eager-map-atom

[T:Type]. ∀[L:T List]. ∀[g:T ⟶ Atom]. ∀[f:Top]. ∀[i:{i:Atom| (i ∈ eager-map(g;L))} ].
  (apply_alist(AtomDeq;eager-map(λa.<a, (g a)>;L);i) i)


Proof




Definitions occuring in Statement :  apply_alist: apply_alist(eq;L;x) l_member: (x ∈ l) eager-map: eager-map(f;as) list: List atom-deq: AtomDeq uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> atom: Atom universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  apply_alist-eager-map2 atom-value-type atom_subtype_base atom-deq_wf istype-atom l_member_wf eager-map_wf istype-top list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality atomEquality independent_isectElimination hypothesis independent_pairFormation axiomSqEquality Error :setIsType,  Error :universeIsType,  closedConclusion sqequalRule Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[g:T  {}\mrightarrow{}  Atom].  \mforall{}[f:Top].  \mforall{}[i:\{i:Atom|  (i  \mmember{}  eager-map(g;L))\}  ].
    (apply\_alist(AtomDeq;eager-map(\mlambda{}a.<g  a,  f  (g  a)>L);i)  \msim{}  f  i)



Date html generated: 2019_06_20-PM-00_42_59
Last ObjectModification: 2019_02_28-PM-01_49_42

Theory : list_0


Home Index