Nuprl Lemma : apply_alist-eager-map-atom
∀[T:Type]. ∀[L:T List]. ∀[g:T ⟶ Atom]. ∀[f:Top]. ∀[i:{i:Atom| (i ∈ eager-map(g;L))} ].
  (apply_alist(AtomDeq;eager-map(λa.<g a, f (g a)>L);i) ~ f i)
Proof
Definitions occuring in Statement : 
apply_alist: apply_alist(eq;L;x)
, 
l_member: (x ∈ l)
, 
eager-map: eager-map(f;as)
, 
list: T List
, 
atom-deq: AtomDeq
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
atom: Atom
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
apply_alist-eager-map2, 
atom-value-type, 
atom_subtype_base, 
atom-deq_wf, 
istype-atom, 
l_member_wf, 
eager-map_wf, 
istype-top, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
atomEquality, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
axiomSqEquality, 
Error :setIsType, 
Error :universeIsType, 
closedConclusion, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[g:T  {}\mrightarrow{}  Atom].  \mforall{}[f:Top].  \mforall{}[i:\{i:Atom|  (i  \mmember{}  eager-map(g;L))\}  ].
    (apply\_alist(AtomDeq;eager-map(\mlambda{}a.<g  a,  f  (g  a)>L);i)  \msim{}  f  i)
Date html generated:
2019_06_20-PM-00_42_59
Last ObjectModification:
2019_02_28-PM-01_49_42
Theory : list_0
Home
Index