Nuprl Lemma : cbv-concat_wf

[T:Type]. ∀[ll:T List List].  (cbv-concat(ll) ∈ List)


Proof




Definitions occuring in Statement :  cbv-concat: cbv-concat(ll) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a top: Top
Lemmas referenced :  cbv-concat-sq subtype_rel_list list_wf top_wf concat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].    (cbv-concat(ll)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_32_06
Last ObjectModification: 2015_12_26-PM-00_37_57

Theory : list_0


Home Index