Nuprl Lemma : cbv-concat_wf
∀[T:Type]. ∀[ll:T List List].  (cbv-concat(ll) ∈ T List)
Proof
Definitions occuring in Statement : 
cbv-concat: cbv-concat(ll)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
cbv-concat-sq, 
subtype_rel_list, 
list_wf, 
top_wf, 
concat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].    (cbv-concat(ll)  \mmember{}  T  List)
Date html generated:
2016_05_14-AM-06_32_06
Last ObjectModification:
2015_12_26-PM-00_37_57
Theory : list_0
Home
Index