Step
*
2
1
of Lemma
co-cons_one_one
.....fun wf.....
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
7. [a / b] = [a' / b'] ∈ {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))}
8. Z : {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))}
⊢ tl(Z) = tl(Z) ∈ colist(T)
BY
{ ((D -1 THEN colistD (-2)) THEN Reduce 0) }
1
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
7. [a / b] = [a' / b'] ∈ {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))}
8. ([] = [a / b] ∈ colist(T)) ∧ ([] = [a' / b'] ∈ colist(T))
⊢ [] = [] ∈ colist(T)
2
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b'] ∈ colist(T)
7. [a / b] = [a' / b'] ∈ {z:colist(T)| (z = [a / b] ∈ colist(T)) ∧ (z = [a' / b'] ∈ colist(T))}
8. u : T
9. v : colist(T)
10. ([u / v] = [a / b] ∈ colist(T)) ∧ ([u / v] = [a' / b'] ∈ colist(T))
⊢ v = v ∈ colist(T)
Latex:
Latex:
.....fun wf.....
1. T : Type
2. a : T
3. a' : T
4. b : colist(T)
5. b' : colist(T)
6. [a / b] = [a' / b']
7. [a / b] = [a' / b']
8. Z : \{z:colist(T)| (z = [a / b]) \mwedge{} (z = [a' / b'])\}
\mvdash{} tl(Z) = tl(Z)
By
Latex:
((D -1 THEN colistD (-2)) THEN Reduce 0)
Home
Index