Nuprl Lemma : colength-cons-not-zero

[T:Type]. ∀[v:T List]. ∀[u:Top].  False supposing colength([u v]) 0 ∈ ℕ


Proof




Definitions occuring in Statement :  cons: [a b] list: List colength: colength(L) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top false: False natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] colength: colength(L) cons: [a b] uimplies: supposing a member: t ∈ T false: False all: x:A. B[x] implies:  Q nat: squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q guard: {T} subtype_rel: A ⊆B top: Top le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True
Lemmas referenced :  istype-top list_wf colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates istype-void istype-int add-zero zero-add le-add-cancel int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalRule introduction cut sqequalHypSubstitution voidElimination extract_by_obid hypothesis Error :universeIsType,  isectElimination thin hypothesisEquality universeEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  applyLambdaEquality setElimination rename imageMemberEquality baseClosed natural_numberEquality independent_functionElimination imageElimination addEquality productElimination independent_isectElimination applyEquality Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  because_Cache Error :equalityIsType4,  Error :equalityIsType1,  equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[v:T  List].  \mforall{}[u:Top].    False  supposing  colength([u  /  v])  =  0



Date html generated: 2019_06_20-PM-00_38_15
Last ObjectModification: 2018_10_03-PM-09_54_43

Theory : list_0


Home Index