Nuprl Lemma : colength-cons-not-zero
∀[T:Type]. ∀[v:T List]. ∀[u:Top].  False supposing colength([u / v]) = 0 ∈ ℕ
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
list: T List
, 
colength: colength(L)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
false: False
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
colength: colength(L)
, 
cons: [a / b]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
false: False
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
istype-top, 
list_wf, 
colength_wf_list, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
istype-void, 
istype-int, 
add-zero, 
zero-add, 
le-add-cancel, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalRule, 
introduction, 
cut, 
sqequalHypSubstitution, 
voidElimination, 
extract_by_obid, 
hypothesis, 
Error :universeIsType, 
isectElimination, 
thin, 
hypothesisEquality, 
universeEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
independent_functionElimination, 
imageElimination, 
addEquality, 
productElimination, 
independent_isectElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
because_Cache, 
Error :equalityIsType4, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[v:T  List].  \mforall{}[u:Top].    False  supposing  colength([u  /  v])  =  0
Date html generated:
2019_06_20-PM-00_38_15
Last ObjectModification:
2018_10_03-PM-09_54_43
Theory : list_0
Home
Index