Nuprl Lemma : colist_wf

[T:Type]. (colist(T) ∈ Type)


Proof




Definitions occuring in Statement :  colist: colist(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T colist: colist(T) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf b-union_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesis productEquality hypothesisEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (colist(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_25_19
Last ObjectModification: 2015_12_26-PM-00_42_38

Theory : list_0


Home Index