Nuprl Lemma : b-union_wf

[A,B:Type].  (A ⋃ B ∈ Type)


Proof




Definitions occuring in Statement :  b-union: A ⋃ B uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  b-union: A ⋃ B uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  tunion_wf bool_wf ifthenelse_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality instantiate hypothesisEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (A  \mcup{}  B  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_20_59
Last ObjectModification: 2015_12_26-AM-09_10_35

Theory : union


Home Index