Nuprl Lemma : combine-list_wf

[A:Type]. ∀[f:A ⟶ A ⟶ A]. ∀[L:A List].  combine-list(x,y.f[x;y];L) ∈ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  combine-list: combine-list(x,y.f[x; y];L) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a combine-list: combine-list(x,y.f[x; y];L) all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf tl_wf hd_wf decidable__le length_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination addEquality applyEquality lambdaEquality isect_memberEquality voidEquality intEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[L:A  List].    combine-list(x,y.f[x;y];L)  \mmember{}  A  supposing  0  <  ||L||



Date html generated: 2016_05_14-AM-06_43_25
Last ObjectModification: 2015_12_26-PM-00_28_22

Theory : list_0


Home Index