Nuprl Lemma : combine-list_wf
∀[A:Type]. ∀[f:A ⟶ A ⟶ A]. ∀[L:A List].  combine-list(x,y.f[x;y];L) ∈ A supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
combine-list: combine-list(x,y.f[x; y];L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
tl_wf, 
hd_wf, 
decidable__le, 
length_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
less_than_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
addEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[L:A  List].    combine-list(x,y.f[x;y];L)  \mmember{}  A  supposing  0  <  ||L||
Date html generated:
2016_05_14-AM-06_43_25
Last ObjectModification:
2015_12_26-PM-00_28_22
Theory : list_0
Home
Index