Nuprl Lemma : cons_neq_nil
∀[T:Type]. ∀[h:T]. ∀[t:T List].  (¬([h / t] = [] ∈ (T List)))
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
Lemmas referenced : 
equal-wf-T-base, 
list_wf, 
cons_wf, 
list_ind_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
baseClosed, 
because_Cache, 
Error :universeIsType, 
universeEquality, 
sqequalRule, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
applyLambdaEquality, 
intEquality, 
natural_numberEquality, 
voidEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[h:T].  \mforall{}[t:T  List].    (\mneg{}([h  /  t]  =  []))
Date html generated:
2019_06_20-PM-00_38_46
Last ObjectModification:
2018_09_26-PM-02_07_28
Theory : list_0
Home
Index