Nuprl Lemma : cons_neq_nil

[T:Type]. ∀[h:T]. ∀[t:T List].  ([h t] [] ∈ (T List)))


Proof




Definitions occuring in Statement :  cons: [a b] nil: [] list: List uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: not: ¬A implies:  Q false: False so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] all: x:A. B[x] top: Top uimplies: supposing a sq_type: SQType(T) guard: {T} true: True
Lemmas referenced :  equal-wf-T-base list_wf cons_wf list_ind_wf list_ind_cons_lemma list_ind_nil_lemma subtype_base_sq int_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis baseClosed because_Cache Error :universeIsType,  universeEquality sqequalRule Error :isect_memberFormation_alt,  lambdaFormation lambdaEquality dependent_functionElimination isect_memberEquality voidElimination applyLambdaEquality intEquality natural_numberEquality voidEquality instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[h:T].  \mforall{}[t:T  List].    (\mneg{}([h  /  t]  =  []))



Date html generated: 2019_06_20-PM-00_38_46
Last ObjectModification: 2018_09_26-PM-02_07_28

Theory : list_0


Home Index