Nuprl Lemma : cons_one_one
∀[T:Type]. ∀[a,a':T]. ∀[b,b':T List].  uiff([a / b] = [a' / b'] ∈ (T List);{(a = a' ∈ T) ∧ (b = b' ∈ (T List))})
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
ge: i ≥ j 
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
cons_wf, 
tl_wf, 
equal_wf, 
and_wf, 
reduce_tl_cons_lemma, 
top_wf, 
subtype_rel_list, 
length_cons_ge_one, 
list_wf, 
length_wf, 
ge_wf, 
squash_wf, 
hd_wf, 
reduce_hd_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
isectElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
universeEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a,a':T].  \mforall{}[b,b':T  List].    uiff([a  /  b]  =  [a'  /  b'];\{(a  =  a')  \mwedge{}  (b  =  b')\})
Date html generated:
2016_05_14-AM-06_43_03
Last ObjectModification:
2016_01_14-PM-08_18_40
Theory : list_0
Home
Index