Nuprl Lemma : cons_one_one

[T:Type]. ∀[a,a':T]. ∀[b,b':T List].  uiff([a b] [a' b'] ∈ (T List);{(a a' ∈ T) ∧ (b b' ∈ (T List))})


Proof




Definitions occuring in Statement :  cons: [a b] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T} and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] top: Top squash: T ge: i ≥  prop: subtype_rel: A ⊆B true: True
Lemmas referenced :  cons_wf tl_wf equal_wf and_wf reduce_tl_cons_lemma top_wf subtype_rel_list length_cons_ge_one list_wf length_wf ge_wf squash_wf hd_wf reduce_hd_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality applyEquality lambdaEquality imageElimination isectElimination independent_isectElimination equalityTransitivity equalitySymmetry natural_numberEquality universeEquality because_Cache imageMemberEquality baseClosed dependent_set_memberEquality setElimination rename productElimination setEquality independent_pairEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,a':T].  \mforall{}[b,b':T  List].    uiff([a  /  b]  =  [a'  /  b'];\{(a  =  a')  \mwedge{}  (b  =  b')\})



Date html generated: 2016_05_14-AM-06_43_03
Last ObjectModification: 2016_01_14-PM-08_18_40

Theory : list_0


Home Index