Nuprl Lemma : eager-append_wf

[T:Type]. ∀[as,bs:T List].  (eager-append(as;bs) ∈ List)


Proof




Definitions occuring in Statement :  eager-append: eager-append(as;bs) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  eager-append: eager-append(as;bs) uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z.t[x; y; z]) has-value: (a)↓ uimplies: supposing a so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf value-type-has-value list-value-type cons_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality callbyvalueReduce independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (eager-append(as;bs)  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_28_18
Last ObjectModification: 2015_12_26-PM-00_41_03

Theory : list_0


Home Index