Nuprl Lemma : eager-map-append_wf

[T:Type]
  ∀[A:Type]. ∀[f:A ⟶ T]. ∀[as:A List]. ∀[bs:T List].  (eager-map-append(f;as;bs) ∈ List) supposing value-type(T)


Proof




Definitions occuring in Statement :  eager-map-append: eager-map-append(f;as;bs) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eager-map-append: eager-map-append(f;as;bs) so_lambda: λ2y.t[x; y] has-value: (a)↓ so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf value-type-has-value list-value-type cons_wf value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality callbyvalueReduce independent_isectElimination applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:T  List].    (eager-map-append(f;as;bs)  \mmember{}  T  List) 
    supposing  value-type(T)



Date html generated: 2016_05_14-AM-06_28_50
Last ObjectModification: 2015_12_26-PM-00_40_44

Theory : list_0


Home Index