Nuprl Lemma : eq_cons_imp_eq_tls

[A:Type]. ∀[a,b:A]. ∀[as,bs:A List].  as bs ∈ (A List) supposing [a as] [b bs] ∈ (A List)


Proof




Definitions occuring in Statement :  cons: [a b] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] top: Top prop: uimplies: supposing a
Lemmas referenced :  tl_wf reduce_tl_cons_lemma equal_wf list_wf cons_wf
Rules used in proof :  cut applyLambdaEquality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality Error :universeIsType,  Error :inhabitedIsType,  because_Cache universeEquality Error :isect_memberFormation_alt,  axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  \mforall{}[a,b:A].  \mforall{}[as,bs:A  List].    as  =  bs  supposing  [a  /  as]  =  [b  /  bs]



Date html generated: 2019_06_20-PM-00_38_59
Last ObjectModification: 2018_09_26-PM-02_07_29

Theory : list_0


Home Index