Nuprl Lemma : eq_cons_imp_eq_tls
∀[A:Type]. ∀[a,b:A]. ∀[as,bs:A List].  as = bs ∈ (A List) supposing [a / as] = [b / bs] ∈ (A List)
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
uimplies: b supposing a
Lemmas referenced : 
tl_wf, 
reduce_tl_cons_lemma, 
equal_wf, 
list_wf, 
cons_wf
Rules used in proof : 
cut, 
applyLambdaEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
Error :universeIsType, 
Error :inhabitedIsType, 
because_Cache, 
universeEquality, 
Error :isect_memberFormation_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:Type].  \mforall{}[a,b:A].  \mforall{}[as,bs:A  List].    as  =  bs  supposing  [a  /  as]  =  [b  /  bs]
Date html generated:
2019_06_20-PM-00_38_59
Last ObjectModification:
2018_09_26-PM-02_07_29
Theory : list_0
Home
Index