Nuprl Lemma : has-value-append-nil

[l:Base]. (l)↓ supposing (l [])↓


Proof




Definitions occuring in Statement :  append: as bs nil: [] has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a append: as bs list_ind: list_ind has-value: (a)↓ prop:
Lemmas referenced :  base_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule callbyvalueCallbyvalue hypothesis callbyvalueReduce axiomSqleEquality lemma_by_obid isectElimination thin baseApply closedConclusion baseClosed hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:Base].  (l)\mdownarrow{}  supposing  (l  @  [])\mdownarrow{}



Date html generated: 2016_05_14-AM-06_31_20
Last ObjectModification: 2016_01_14-PM-08_24_45

Theory : list_0


Home Index