Nuprl Lemma : has-valueall-cons

[a,b:Base].  uiff(has-valueall(a) ∧ has-valueall(b);has-valueall([a b]))


Proof




Definitions occuring in Statement :  cons: [a b] has-valueall: has-valueall(a) uiff: uiff(P;Q) uall: [x:A]. B[x] and: P ∧ Q base: Base
Definitions unfolded in proof :  has-valueall: has-valueall(a) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a evalall: evalall(t) cons: [a b] has-value: (a)↓ prop:
Lemmas referenced :  base_wf and_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution productElimination thin callbyvalueReduce hypothesis divergentSqle sqleReflexivity lemma_by_obid isectElimination baseClosed axiomSqleEquality baseApply closedConclusion hypothesisEquality callbyvalueCallbyvalue independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b:Base].    uiff(has-valueall(a)  \mwedge{}  has-valueall(b);has-valueall([a  /  b]))



Date html generated: 2016_05_14-AM-06_26_05
Last ObjectModification: 2016_01_14-PM-08_26_50

Theory : list_0


Home Index