Nuprl Lemma : intlex-aux-reflexive

[l1,l2:ℤ List].  intlex-aux(l1;l2) tt supposing l1 l2 ∈ (ℤ List)


Proof




Definitions occuring in Statement :  intlex-aux: intlex-aux(l1;l2) list: List btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q intlex-aux: intlex-aux(l1;l2) nil: [] it: btrue: tt bool: 𝔹 all: x:A. B[x] cons: [a b] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T not: ¬A false: False prop: guard: {T} sq_type: SQType(T)
Lemmas referenced :  list_induction equal-wf-base bool_wf list_subtype_base int_subtype_base list_wf it_wf subtype_rel_union unit_wf2 spread_cons_lemma top_wf less_than_anti-reflexive less_than_wf subtype_base_sq and_wf equal_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation thin introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality hypothesis baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache independent_isectElimination independent_functionElimination inlEquality voidEquality voidElimination lambdaFormation rename dependent_functionElimination isect_memberEquality int_eqReduceTrueSq lessCases sqequalAxiom independent_pairFormation natural_numberEquality imageMemberEquality imageElimination productElimination axiomEquality equalityTransitivity equalitySymmetry hyp_replacement instantiate dependent_set_memberEquality applyLambdaEquality setElimination

Latex:
\mforall{}[l1,l2:\mBbbZ{}  List].    intlex-aux(l1;l2)  =  tt  supposing  l1  =  l2



Date html generated: 2017_09_29-PM-05_50_11
Last ObjectModification: 2017_07_26-PM-01_39_16

Theory : list_0


Home Index