Nuprl Lemma : isaxiom_wf_listunion
∀[A,B:Type]. ∀[L:Unit ⋃ (A × B)].  (isaxiom(L) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
b-union: A ⋃ B
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
isaxiom: if z = Ax then a otherwise b
, 
unit: Unit
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
b-union_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
unionElimination, 
equalityElimination, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
productEquality, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:Unit  \mcup{}  (A  \mtimes{}  B)].    (isaxiom(L)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-AM-06_25_10
Last ObjectModification:
2015_12_26-PM-00_42_39
Theory : list_0
Home
Index