Nuprl Lemma : ispair-or-isaxiom-append-nil

l:Base. ((l [])↓  ((↑ispair(l [])) ∨ (↑isaxiom(l []))))


Proof




Definitions occuring in Statement :  append: as bs nil: [] has-value: (a)↓ assert: b bfalse: ff btrue: tt ispair: if is pair then otherwise b isaxiom: if Ax then otherwise b all: x:A. B[x] implies:  Q or: P ∨ Q base: Base
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T or: P ∨ Q has-value: (a)↓ assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff true: True prop: top: Top guard: {T} uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a append: as bs list_ind: list_ind cons: [a b] not: ¬A false: False nil: [] it:
Lemmas referenced :  bottom_diverge assert_of_bnot bfalse_wf btrue_wf is-exception_wf sqeqff_to_assert base_wf has-value_wf_base has-value-implies-dec-isaxiom-2 top_wf false_wf has-value-implies-dec-ispair-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality independent_functionElimination hypothesis unionElimination inlFormation natural_numberEquality isect_memberEquality voidElimination voidEquality inrFormation because_Cache isectElimination isaxiomCases divergentSqle isect_memberFormation introduction sqequalAxiom productElimination independent_isectElimination ispairCases callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}l:Base.  ((l  @  [])\mdownarrow{}  {}\mRightarrow{}  ((\muparrow{}ispair(l  @  []))  \mvee{}  (\muparrow{}isaxiom(l  @  []))))



Date html generated: 2016_05_14-AM-06_31_23
Last ObjectModification: 2016_01_14-PM-08_24_56

Theory : list_0


Home Index