Nuprl Lemma : l_all_cons
∀[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ∀L:T List.  ((∀y∈[x / L].P[y]) 
⇐⇒ P[x] ∧ (∀y∈L.P[y]))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
l_all_iff, 
cons_wf, 
l_member_wf, 
cons_member, 
equal_wf, 
l_all_wf, 
list_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
setEquality, 
productElimination, 
independent_functionElimination, 
inlFormation, 
inrFormation, 
productEquality, 
universeEquality, 
functionEquality, 
unionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  \mforall{}L:T  List.    ((\mforall{}y\mmember{}[x  /  L].P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mwedge{}  (\mforall{}y\mmember{}L.P[y]))
Date html generated:
2016_10_21-AM-09_49_04
Last ObjectModification:
2016_07_12-AM-05_08_43
Theory : list_0
Home
Index