Nuprl Lemma : l_all_cons

[T:Type]. ∀[P:T ⟶ ℙ].  ∀x:T. ∀L:T List.  ((∀y∈[x L].P[y]) ⇐⇒ P[x] ∧ (∀y∈L.P[y]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) cons: [a b] list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q or: P ∨ Q guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  l_all_iff cons_wf l_member_wf cons_member equal_wf l_all_wf list_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality setElimination rename setEquality productElimination independent_functionElimination inlFormation inrFormation productEquality universeEquality functionEquality unionElimination equalitySymmetry dependent_set_memberEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  \mforall{}L:T  List.    ((\mforall{}y\mmember{}[x  /  L].P[y])  \mLeftarrow{}{}\mRightarrow{}  P[x]  \mwedge{}  (\mforall{}y\mmember{}L.P[y]))



Date html generated: 2016_10_21-AM-09_49_04
Last ObjectModification: 2016_07_12-AM-05_08_43

Theory : list_0


Home Index