Nuprl Lemma : l_all_map

[A,B:Type].  ∀f:A ⟶ B. ∀L:A List.  ∀[P:B ⟶ ℙ]. ((∀x∈map(f;L).P[x]) ⇐⇒ (∀x∈L.P[f x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T}
Lemmas referenced :  l_member_wf equal_wf all_wf exists_wf member_map map_wf l_all_iff l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin applyEquality hypothesisEquality independent_functionElimination dependent_pairFormation because_Cache productEquality introduction extract_by_obid isectElimination sqequalRule lambdaEquality functionEquality productElimination cumulativity setElimination rename setEquality universeEquality hyp_replacement equalitySymmetry applyLambdaEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.    \mforall{}[P:B  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x\mmember{}map(f;L).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L.P[f  x]))



Date html generated: 2019_06_20-PM-00_41_45
Last ObjectModification: 2018_09_18-PM-02_28_25

Theory : list_0


Home Index