Nuprl Lemma : l_all_reverse

[T:Type]. ∀[P:T ⟶ ℙ].  ∀L:T List. ((∀x∈rev(L).P[x]) ⇐⇒ (∀x∈L.P[x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) reverse: rev(as) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q
Lemmas referenced :  l_all_iff reverse_wf l_member_wf l_all_wf list_wf member-reverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis sqequalRule lambdaEquality applyEquality setElimination rename setEquality productElimination independent_functionElimination because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:T  List.  ((\mforall{}x\mmember{}rev(L).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L.P[x]))



Date html generated: 2016_05_14-AM-06_41_49
Last ObjectModification: 2015_12_26-PM-00_29_48

Theory : list_0


Home Index