Nuprl Lemma : l_exists_functionality

[T:Type]
  ∀L:T List. ∀[P,Q:{x:T| (x ∈ L)}  ⟶ ℙ].  ((∀x:{x:T| (x ∈ L)} (P[x] ⇐⇒ Q[x]))  {(∃x∈L. P[x]) ⇐⇒ (∃x∈L. Q[x])})


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q guard: {T} iff: ⇐⇒ Q and: P ∧ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] member: t ∈ T prop: uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q
Lemmas referenced :  list_wf iff_wf all_wf l_exists_wf sq_stable__le list-subtype l_member_wf select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut hypothesis dependent_functionElimination lemma_by_obid isectElimination setEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename natural_numberEquality independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[P,Q:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}x:\{x:T|  (x  \mmember{}  L)\}  .  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  \{(\mexists{}x\mmember{}L.  P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  Q[x])\})



Date html generated: 2016_05_14-AM-06_40_13
Last ObjectModification: 2016_01_14-PM-08_20_50

Theory : list_0


Home Index