Nuprl Lemma : l_exists_iff

[T:Type]. ∀L:T List. ∀[P:{x:T| (x ∈ L)}  ⟶ ℙ]. ((∃x∈L. P[x]) ⇐⇒ ∃x:T. ((x ∈ L) ∧ P[x]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l_exists: (∃x∈L. P[x]) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T rev_implies:  Q subtype_rel: A ⊆B exists: x:A. B[x] cand: c∧ B l_member: (x ∈ l) nat: le: A ≤ B label: ...$L... t guard: {T}
Lemmas referenced :  exists_wf int_seg_wf length_wf l_member_wf select_wf list-subtype sq_stable__le list_wf select_member lelt_wf less_than_wf equal_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality functionExtensionality setEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination productEquality dependent_set_memberEquality universeEquality functionEquality dependent_pairFormation dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].  ((\mexists{}x\mmember{}L.  P[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((x  \mmember{}  L)  \mwedge{}  P[x]))



Date html generated: 2017_04_14-AM-08_40_11
Last ObjectModification: 2017_02_27-PM-03_30_49

Theory : list_0


Home Index