Nuprl Lemma : length-merge-int

[T:Type]. ∀[as,bs:T List].  (||merge-int(bs;as)|| (||bs|| ||as||) ∈ ℤsupposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  length: ||as|| merge-int: merge-int(as;bs) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q merge-int: merge-int(as;bs) all: x:A. B[x] top: Top squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf list_wf equal_wf length_wf merge-int_wf reduce_nil_lemma length_of_nil_lemma add-zero reduce_cons_lemma length_of_cons_lemma squash_wf true_wf length-insert-int iff_weakening_equal add_functionality_wrt_eq general_add_assoc subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis intEquality independent_isectElimination addEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache lambdaFormation rename applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (||merge-int(bs;as)||  =  (||bs||  +  ||as||))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-08_36_13
Last ObjectModification: 2017_02_27-PM-03_28_21

Theory : list_0


Home Index