Nuprl Lemma : length_of_null_list

[A:Type]. ∀[as:A List].  ||as|| 0 ∈ ℤ supposing as [] ∈ (A List)


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop:
Lemmas referenced :  length_of_nil_lemma equal-wf-T-base length_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis thin sqequalRule extract_by_obid natural_numberEquality hyp_replacement equalitySymmetry applyLambdaEquality sqequalHypSubstitution isectElimination intEquality hypothesisEquality baseClosed Error :universeIsType,  isect_memberEquality axiomEquality because_Cache equalityTransitivity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].    ||as||  =  0  supposing  as  =  []



Date html generated: 2019_06_20-PM-00_39_53
Last ObjectModification: 2018_09_26-PM-02_12_29

Theory : list_0


Home Index