Nuprl Lemma : list-if-has-value-length2

l:Base. l ∈ Base List supposing (||l||)↓


Proof




Definitions occuring in Statement :  length: ||as|| list: List has-value: (a)↓ uimplies: supposing a all: x:A. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T length: ||as|| so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] strict: strict(F) and: P ∧ Q implies:  Q has-value: (a)↓ uall: [x:A]. B[x] prop: is-exception: is-exception(t) false: False
Lemmas referenced :  is-exception_wf exception-not-value base_wf has-value_wf_base int-value-type value-type-has-value list-if-has-value-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution lemma_by_obid dependent_functionElimination thin baseClosed sqequalRule independent_isectElimination independent_pairFormation callbyvalueAdd hypothesis baseApply closedConclusion hypothesisEquality productElimination isectElimination because_Cache equalityTransitivity equalitySymmetry addExceptionCases axiomSqleEquality sqleReflexivity independent_functionElimination voidElimination axiomEquality

Latex:
\mforall{}l:Base.  l  \mmember{}  Base  List  supposing  (||l||)\mdownarrow{}



Date html generated: 2016_05_14-AM-06_33_26
Last ObjectModification: 2016_01_14-PM-08_23_33

Theory : list_0


Home Index