Nuprl Lemma : map_append
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as,as':A List].  (map(f;as @ as') = (map(f;as) @ map(f;as')) ∈ (B List))
Proof
Definitions occuring in Statement : 
map: map(f;as), 
append: as @ bs, 
list: T List, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top
Lemmas referenced : 
map_append_sq, 
append_wf, 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as,as':A  List].    (map(f;as  @  as')  =  (map(f;as)  @  map(f;as')))
 Date html generated: 
2016_05_14-AM-06_32_40
 Last ObjectModification: 
2015_12_26-PM-00_37_27
Theory : list_0
Home
Index