Nuprl Lemma : map_append

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as,as':A List].  (map(f;as as') (map(f;as) map(f;as')) ∈ (B List))


Proof




Definitions occuring in Statement :  map: map(f;as) append: as bs list: List uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  map_append_sq append_wf map_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as,as':A  List].    (map(f;as  @  as')  =  (map(f;as)  @  map(f;as')))



Date html generated: 2016_05_14-AM-06_32_40
Last ObjectModification: 2015_12_26-PM-00_37_27

Theory : list_0


Home Index