Nuprl Lemma : map_append_sq

[f,a,b:Top].  (map(f;a b) map(f;a) map(f;b))


Proof




Definitions occuring in Statement :  map: map(f;as) append: as bs uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs map: map(f;as) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top
Lemmas referenced :  sqequal-list_ind has-value_wf_base istype-base is-exception_wf map_cons_lemma istype-void list_ind_cons_lemma istype-sqle list_ind_nil_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin extract_by_obid sqequalHypSubstitution isectElimination baseApply closedConclusion baseClosed hypothesisEquality independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  callbyvalueCallbyvalue hypothesis callbyvalueReduce Error :universeIsType,  callbyvalueExceptionCases Error :inlFormation_alt,  imageMemberEquality imageElimination exceptionSqequal Error :inrFormation_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination divergentSqle sqleRule sqleReflexivity Error :inhabitedIsType,  because_Cache axiomSqEquality Error :isectIsTypeImplies

Latex:
\mforall{}[f,a,b:Top].    (map(f;a  @  b)  \msim{}  map(f;a)  @  map(f;b))



Date html generated: 2019_06_20-PM-00_39_39
Last ObjectModification: 2019_01_03-AM-09_48_06

Theory : list_0


Home Index