Nuprl Lemma : sqequal-list_ind
∀[F:Base]
  ∀[G:Base]
    ∀[H,J:Base].
      ∀as,b1,b2:Base.
        F[rec-case(as) of
          [] => b1
          h::t =>
           r.H[h;t;r]] ~ G[rec-case(as) of
                           [] => b2
                           h::t =>
                            r.J[h;t;r]] 
        supposing F[b1] ~ G[b2] 
      supposing (∀x,y,r1,r2:Base.  ((F[r1] ≤ G[r2]) 
⇒ (F[H[x;y;r1]] ≤ G[J[x;y;r2]])))
      ∧ (∀x,y,r1,r2:Base.  ((G[r1] ≤ F[r2]) 
⇒ (G[J[x;y;r1]] ≤ F[H[x;y;r2]]))) 
    supposing strict1(λx.G[x]) 
  supposing strict1(λx.F[x])
Proof
Definitions occuring in Statement : 
list_ind: list_ind, 
strict1: strict1(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
base: Base
, 
sqle: s ≤ t
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
strict1_wf, 
sqle_wf_base, 
all_wf, 
base_wf, 
sqle-list_ind
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalSqle, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
sqleReflexivity, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
functionEquality
Latex:
\mforall{}[F:Base]
    \mforall{}[G:Base]
        \mforall{}[H,J:Base].
            \mforall{}as,b1,b2:Base.
                F[rec-case(as)  of
                    []  =>  b1
                    h::t  =>
                      r.H[h;t;r]]  \msim{}  G[rec-case(as)  of
                                                      []  =>  b2
                                                      h::t  =>
                                                        r.J[h;t;r]] 
                supposing  F[b1]  \msim{}  G[b2] 
            supposing  (\mforall{}x,y,r1,r2:Base.    ((F[r1]  \mleq{}  G[r2])  {}\mRightarrow{}  (F[H[x;y;r1]]  \mleq{}  G[J[x;y;r2]])))
            \mwedge{}  (\mforall{}x,y,r1,r2:Base.    ((G[r1]  \mleq{}  F[r2])  {}\mRightarrow{}  (G[J[x;y;r1]]  \mleq{}  F[H[x;y;r2]]))) 
        supposing  strict1(\mlambda{}x.G[x]) 
    supposing  strict1(\mlambda{}x.F[x])
Date html generated:
2016_05_14-AM-06_29_05
Last ObjectModification:
2016_01_14-PM-08_25_48
Theory : list_0
Home
Index