Step
*
2
of Lemma
merge-int-comm
1. T : Type
2. T ⊆r ℤ
3. u : T
4. v : T List
5. ∀[bs:T List]. merge-int(v;bs) = merge-int(bs;v) ∈ (T List) supposing sorted(v) ∧ sorted(bs)
6. bs : T List
7. sorted([u / v])
8. sorted(bs)
9. sorted(v)
⊢ merge-int([u / v];bs) = insert-int(u;merge-int(bs;v)) ∈ (T List)
BY
{ (RWO "5<" 0 THENA Auto) }
1
1. T : Type
2. T ⊆r ℤ
3. u : T
4. v : T List
5. ∀[bs:T List]. merge-int(v;bs) = merge-int(bs;v) ∈ (T List) supposing sorted(v) ∧ sorted(bs)
6. bs : T List
7. sorted([u / v])
8. sorted(bs)
9. sorted(v)
⊢ merge-int([u / v];bs) = insert-int(u;merge-int(v;bs)) ∈ (T List)
Latex:
Latex:
1. T : Type
2. T \msubseteq{}r \mBbbZ{}
3. u : T
4. v : T List
5. \mforall{}[bs:T List]. merge-int(v;bs) = merge-int(bs;v) supposing sorted(v) \mwedge{} sorted(bs)
6. bs : T List
7. sorted([u / v])
8. sorted(bs)
9. sorted(v)
\mvdash{} merge-int([u / v];bs) = insert-int(u;merge-int(bs;v))
By
Latex:
(RWO "5<" 0 THENA Auto)
Home
Index