Nuprl Lemma : no_repeats_singleton_uiff
∀[T:Type]. ∀[x:T].  uiff(no_repeats(T;[x]);True)
Proof
Definitions occuring in Statement : 
no_repeats: no_repeats(T;l)
, 
cons: [a / b]
, 
nil: []
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
no_repeats_wf, 
cons_wf, 
nil_wf, 
no_repeats_singleton, 
no_repeats_witness, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    uiff(no\_repeats(T;[x]);True)
Date html generated:
2016_05_14-AM-06_46_07
Last ObjectModification:
2015_12_26-PM-00_26_07
Theory : list_0
Home
Index