Nuprl Lemma : reduce-ifthenelse

[f,k,x,y,b:Top].  (reduce(f;k;if then else fi if then reduce(f;k;x) else reduce(f;k;y) fi )


Proof




Definitions occuring in Statement :  reduce: reduce(f;k;as) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reduce: reduce(f;k;as) list_ind: list_ind ifthenelse: if then else fi  so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  top_wf is-exception_wf base_wf has-value_wf_base lifting-strict-decide
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom because_Cache

Latex:
\mforall{}[f,k,x,y,b:Top].
    (reduce(f;k;if  b  then  x  else  y  fi  )  \msim{}  if  b  then  reduce(f;k;x)  else  reduce(f;k;y)  fi  )



Date html generated: 2016_05_14-AM-06_29_32
Last ObjectModification: 2016_01_14-PM-08_25_36

Theory : list_0


Home Index