Nuprl Lemma : select_cons_tl_sq
∀[T:Type]. ∀[x:T]. ∀[l:T List]. ∀[i:ℕ||l||].  ([x / l][i + 1] ~ l[i])
Proof
Definitions occuring in Statement : 
select: L[n], 
length: ||as||, 
cons: [a / b], 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
top: Top, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
lelt: i ≤ j < k, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
select-cons-tl, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
add-subtract-cancel, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
intEquality, 
because_Cache, 
minusEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].    ([x  /  l][i  +  1]  \msim{}  l[i])
Date html generated:
2016_05_14-AM-06_36_33
Last ObjectModification:
2015_12_26-PM-00_33_55
Theory : list_0
Home
Index