Nuprl Lemma : sort-int_wf

[T:Type]. ∀[as:T List]. (sort-int(as) ∈ List) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  sort-int: sort-int(as) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sort-int: sort-int(as)
Lemmas referenced :  merge-int_wf nil_wf list_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  (sort-int(as)  \mmember{}  T  List)  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2016_05_14-AM-06_43_10
Last ObjectModification: 2015_12_26-PM-00_28_49

Theory : list_0


Home Index