Nuprl Lemma : sort-int_wf
∀[T:Type]. ∀[as:T List]. (sort-int(as) ∈ T List) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
sort-int: sort-int(as)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sort-int: sort-int(as)
Lemmas referenced : 
merge-int_wf, 
nil_wf, 
list_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  (sort-int(as)  \mmember{}  T  List)  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_14-AM-06_43_10
Last ObjectModification:
2015_12_26-PM-00_28_49
Theory : list_0
Home
Index