Nuprl Lemma : sorted_wf

[T:Type]. ∀[L:T List]. (sorted(L) ∈ ℙsupposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  sorted: sorted(L) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T int: universe: Type
Definitions unfolded in proof :  sorted: sorted(L) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  subtype_rel_wf list_wf le_weakening2 less_than_transitivity2 sq_stable__le select_wf le_wf length_wf int_seg_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache setElimination rename independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  (sorted(L)  \mmember{}  \mBbbP{})  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2016_05_14-AM-06_36_10
Last ObjectModification: 2016_01_14-PM-08_22_31

Theory : list_0


Home Index