Nuprl Lemma : sqequal-list_accum
∀[F:Base]
  ∀[G:Base]
    ∀[H,J:Base].
      ∀as,b1,b2:Base.
        F[accumulate (with value v and list item a):
           H[v;a]
          over list:
            as
          with starting value:
           b1)] ~ G[accumulate (with value v and list item a):
                     J[v;a]
                    over list:
                      as
                    with starting value:
                     b2)] 
        supposing F[b1] ~ G[b2] 
      supposing (∀a,r1,r2:Base.  ((F[r1] ≤ G[r2]) 
⇒ (F[H[r1;a]] ≤ G[J[r2;a]])))
      ∧ (∀a,r1,r2:Base.  ((G[r1] ≤ F[r2]) 
⇒ (G[J[r1;a]] ≤ F[H[r2;a]]))) 
    supposing strict1(λx.G[x]) 
  supposing strict1(λx.F[x])
Proof
Definitions occuring in Statement : 
list_accum: list_accum, 
strict1: strict1(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
base: Base
, 
sqle: s ≤ t
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
strict1_wf, 
sqle_wf_base, 
all_wf, 
base_wf, 
sqle-list_accum
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalSqle, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
sqleReflexivity, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
functionEquality
Latex:
\mforall{}[F:Base]
    \mforall{}[G:Base]
        \mforall{}[H,J:Base].
            \mforall{}as,b1,b2:Base.
                F[accumulate  (with  value  v  and  list  item  a):
                      H[v;a]
                    over  list:
                        as
                    with  starting  value:
                      b1)]  \msim{}  G[accumulate  (with  value  v  and  list  item  a):
                                          J[v;a]
                                        over  list:
                                            as
                                        with  starting  value:
                                          b2)] 
                supposing  F[b1]  \msim{}  G[b2] 
            supposing  (\mforall{}a,r1,r2:Base.    ((F[r1]  \mleq{}  G[r2])  {}\mRightarrow{}  (F[H[r1;a]]  \mleq{}  G[J[r2;a]])))
            \mwedge{}  (\mforall{}a,r1,r2:Base.    ((G[r1]  \mleq{}  F[r2])  {}\mRightarrow{}  (G[J[r1;a]]  \mleq{}  F[H[r2;a]]))) 
        supposing  strict1(\mlambda{}x.G[x]) 
    supposing  strict1(\mlambda{}x.F[x])
Date html generated:
2016_05_14-AM-06_27_53
Last ObjectModification:
2016_01_14-PM-08_26_18
Theory : list_0
Home
Index