Step
*
1
of Lemma
sqle-list_accum
.....assertion.....
1. F : Base
2. strict1(λx.F[x])
3. G : Base
4. strict1(λx.G[x])
5. H : Base
6. J : Base
7. ∀a,r1,r2:Base. ((F[r1] ≤ G[r2])
⇒ (F[H[r1;a]] ≤ G[J[r2;a]]))
8. as : Base@i
9. b1 : Base@i
10. b2 : Base@i
11. F[b1] ≤ G[b2]
⊢ ∀j:ℕ. ∀as,b1,b2:Base.
((F[b1] ≤ G[b2])
⇒ (F[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum H[y;h] t otherwise if v = Ax then y otherwise ⊥^j
⊥
b1
as] ≤ G[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum J[y;h] t otherwise if v = Ax then y otherwise ⊥^j
⊥
b2
as]))
BY
{ (RepeatFor 4 (Thin (-1))
THEN InductionOnNat
THEN (UnivCD THENA Auto)
THEN Reduce 0
THEN Try ((Progress Strictness
THEN OnMaybeHyp 2 (\h. (D h
THEN (SplitAndHyps THEN All Reduce)
THEN AssumeHasValue
THEN Try ((FHyp h [-1] THEN BotDiv THEN Auto))
THEN Assert ⌜False⌝⋅
THEN Try (FalseHD (-1))
THEN Try ((FHyp (h+2) [-1] THENA Auto))
THEN (RepeatFor 2 (D -1) THEN BotDiv)
THEN FLemma `exception-not-bottom` [-1]
THEN Auto))
))) }
1
1. F : Base
2. strict1(λx.F[x])
3. G : Base
4. strict1(λx.G[x])
5. H : Base
6. J : Base
7. ∀a,r1,r2:Base. ((F[r1] ≤ G[r2])
⇒ (F[H[r1;a]] ≤ G[J[r2;a]]))
8. j : ℤ
9. 0 < j
10. ∀as,b1,b2:Base.
((F[b1] ≤ G[b2])
⇒ (F[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum H[y;h] t otherwise if v = Ax then y otherwise ⊥^j - 1
⊥
b1
as] ≤ G[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum J[y;h] t otherwise if v = Ax then y otherwise ⊥^j\000C - 1
⊥
b2
as]))
11. as : Base@i
12. b1 : Base@i
13. b2 : Base@i
14. F[b1] ≤ G[b2]@i
⊢ F[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum H[y;h] t otherwise if v = Ax then y otherwise ⊥^j
⊥
b1
as] ≤ G[λlist_accum,y,L. eval v = L in
if v is a pair then let h,t = v
in list_accum J[y;h] t otherwise if v = Ax then y otherwise ⊥^j
⊥
b2
as]
Latex:
Latex:
.....assertion.....
1. F : Base
2. strict1(\mlambda{}x.F[x])
3. G : Base
4. strict1(\mlambda{}x.G[x])
5. H : Base
6. J : Base
7. \mforall{}a,r1,r2:Base. ((F[r1] \mleq{} G[r2]) {}\mRightarrow{} (F[H[r1;a]] \mleq{} G[J[r2;a]]))
8. as : Base@i
9. b1 : Base@i
10. b2 : Base@i
11. F[b1] \mleq{} G[b2]
\mvdash{} \mforall{}j:\mBbbN{}. \mforall{}as,b1,b2:Base.
((F[b1] \mleq{} G[b2])
{}\mRightarrow{} (F[\mlambda{}list$_{accum}$,y,L. eval v = L in
if v is a pair then let h,t = v
in list$_{accum}$ H[y;h] t
otherwise if v = Ax then y otherwise \mbot{}\^{}j
\mbot{}
b1
as] \mleq{} G[\mlambda{}list$_{accum}$,y,L. eval v = L in
if v is a pair then let h,t = v
in list$_{accum}$ J[y;h] t
otherwise if v = Ax then y otherwise \mbot{}\^{}j
\mbot{}
b2
as]))
By
Latex:
(RepeatFor 4 (Thin (-1))
THEN InductionOnNat
THEN (UnivCD THENA Auto)
THEN Reduce 0
THEN Try ((Progress Strictness
THEN OnMaybeHyp 2 (\mbackslash{}h. (D h
THEN (SplitAndHyps THEN All Reduce)
THEN AssumeHasValue
THEN Try ((FHyp h [-1] THEN BotDiv THEN Auto))
THEN Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{}
THEN Try (FalseHD (-1))
THEN Try ((FHyp (h+2) [-1] THENA Auto))
THEN (RepeatFor 2 (D -1) THEN BotDiv)
THEN FLemma `exception-not-bottom` [-1]
THEN Auto))
)))
Home
Index