Nuprl Lemma : alist-map_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:(T × T) List].  (alist-map(eq;L) ∈ T ⟶ T)
Proof
Definitions occuring in Statement : 
alist-map: alist-map(eq;L)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
alist-map: alist-map(eq;L)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
apply-alist_wf, 
list_wf, 
deq_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
axiomEquality, 
productEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:(T  \mtimes{}  T)  List].    (alist-map(eq;L)  \mmember{}  T  {}\mrightarrow{}  T)
Date html generated:
2020_05_19-PM-09_51_04
Last ObjectModification:
2020_01_26-PM-10_27_43
Theory : list_1
Home
Index