Nuprl Lemma : alist-map_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:(T × T) List].  (alist-map(eq;L) ∈ T ⟶ T)


Proof




Definitions occuring in Statement :  alist-map: alist-map(eq;L) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T alist-map: alist-map(eq;L) all: x:A. B[x] implies:  Q
Lemmas referenced :  apply-alist_wf list_wf deq_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt unionElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType axiomEquality productEquality isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:(T  \mtimes{}  T)  List].    (alist-map(eq;L)  \mmember{}  T  {}\mrightarrow{}  T)



Date html generated: 2020_05_19-PM-09_51_04
Last ObjectModification: 2020_01_26-PM-10_27_43

Theory : list_1


Home Index