Nuprl Lemma : apply-alist_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[V:Type]. ∀[L:(T × V) List].  (apply-alist(eq;L;x) ∈ V?)


Proof




Definitions occuring in Statement :  apply-alist: apply-alist(eq;L;x) list: List deq: EqDecider(T) uall: [x:A]. B[x] unit: Unit member: t ∈ T product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q apply-alist: apply-alist(eq;L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b deq: EqDecider(T) pi1: fst(t) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  eqof: eqof(d) pi2: snd(t) bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases list_ind_nil_lemma it_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_ind_cons_lemma bool_wf eqtt_to_assert safe-assert-deq unit_wf2 eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_ind_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality cumulativity applyEquality because_Cache unionElimination isect_memberEquality voidEquality inrEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate equalityElimination inlEquality dependent_pairFormation unionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[V:Type].  \mforall{}[L:(T  \mtimes{}  V)  List].    (apply-alist(eq;L;x)  \mmember{}  V?)



Date html generated: 2017_04_14-AM-08_46_38
Last ObjectModification: 2017_02_27-PM-03_33_47

Theory : list_0


Home Index