Nuprl Lemma : append_cancel_nil

[A:Type]. ∀[as,bs:A List].  bs [] ∈ (A List) supposing as (as bs) ∈ (A List)


Proof




Definitions occuring in Statement :  append: as bs nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  append_cancel nil_wf equal_wf list_wf append_wf append-nil subtype_rel_list top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality applyEquality lambdaEquality voidElimination voidEquality

Latex:
\mforall{}[A:Type].  \mforall{}[as,bs:A  List].    bs  =  []  supposing  as  =  (as  @  bs)



Date html generated: 2016_05_14-PM-02_21_33
Last ObjectModification: 2015_12_26-PM-04_27_41

Theory : list_1


Home Index