Nuprl Lemma : append_cancel_nil
∀[A:Type]. ∀[as,bs:A List].  bs = [] ∈ (A List) supposing as = (as @ bs) ∈ (A List)
Proof
Definitions occuring in Statement : 
append: as @ bs, 
nil: [], 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top
Lemmas referenced : 
append_cancel, 
nil_wf, 
equal_wf, 
list_wf, 
append_wf, 
append-nil, 
subtype_rel_list, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
applyEquality, 
lambdaEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A:Type].  \mforall{}[as,bs:A  List].    bs  =  []  supposing  as  =  (as  @  bs)
 Date html generated: 
2016_05_14-PM-02_21_33
 Last ObjectModification: 
2015_12_26-PM-04_27_41
Theory : list_1
Home
Index