Nuprl Lemma : append_iseg

[T:Type]. ∀as,bs,cs:T List.  (as bs ≤ as cs ⇐⇒ bs ≤ cs)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} top: Top
Lemmas referenced :  equal_wf list_wf append_wf exists_wf squash_wf true_wf iff_weakening_equal append_assoc length_wf append-cancellation
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut introduction extract_by_obid isectElimination cumulativity hypothesis lambdaEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}as,bs,cs:T  List.    (as  @  bs  \mleq{}  as  @  cs  \mLeftarrow{}{}\mRightarrow{}  bs  \mleq{}  cs)



Date html generated: 2017_04_17-AM-08_45_32
Last ObjectModification: 2017_02_27-PM-05_04_16

Theory : list_1


Home Index