Nuprl Lemma : bij_inv_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[bi:Bij(A;B;f)].
  (bij_inv(bi) ∈ {g:B ⟶ A| (∀b:B. ((f (g b)) = b ∈ B)) ∧ (∀a:A. ((g (f a)) = a ∈ A))} )
Proof
Definitions occuring in Statement : 
bij_inv: bij_inv(bi)
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bij_inv: bij_inv(bi)
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
pi2: snd(t)
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
guard: {T}
, 
inject: Inj(A;B;f)
, 
pi1: fst(t)
Lemmas referenced : 
exists_wf, 
equal_wf, 
pi1_wf, 
all_wf, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
functionExtensionality, 
hypothesis, 
lambdaFormation, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[bi:Bij(A;B;f)].
    (bij\_inv(bi)  \mmember{}  \{g:B  {}\mrightarrow{}  A|  (\mforall{}b:B.  ((f  (g  b))  =  b))  \mwedge{}  (\mforall{}a:A.  ((g  (f  a))  =  a))\}  )
Date html generated:
2017_04_17-AM-07_46_42
Last ObjectModification:
2017_02_27-PM-04_18_04
Theory : list_1
Home
Index