Nuprl Lemma : bij_inv_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[bi:Bij(A;B;f)].
  (bij_inv(bi) ∈ {g:B ⟶ A| (∀b:B. ((f (g b)) b ∈ B)) ∧ (∀a:A. ((g (f a)) a ∈ A))} )


Proof




Definitions occuring in Statement :  bij_inv: bij_inv(bi) biject: Bij(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bij_inv: bij_inv(bi) biject: Bij(A;B;f) and: P ∧ Q pi2: snd(t) surject: Surj(A;B;f) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: exists: x:A. B[x] cand: c∧ B guard: {T} inject: Inj(A;B;f) pi1: fst(t)
Lemmas referenced :  exists_wf equal_wf pi1_wf all_wf biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin dependent_set_memberEquality lambdaEquality applyEquality hypothesisEquality extract_by_obid isectElimination cumulativity functionExtensionality hypothesis lambdaFormation dependent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation productEquality axiomEquality isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[bi:Bij(A;B;f)].
    (bij\_inv(bi)  \mmember{}  \{g:B  {}\mrightarrow{}  A|  (\mforall{}b:B.  ((f  (g  b))  =  b))  \mwedge{}  (\mforall{}a:A.  ((g  (f  a))  =  a))\}  )



Date html generated: 2017_04_17-AM-07_46_42
Last ObjectModification: 2017_02_27-PM-04_18_04

Theory : list_1


Home Index