Nuprl Lemma : cardinality-le_wf

[T:Type]. ∀[n:ℕ].  (|T| ≤ n ∈ ℙ)


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n nat: uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  cardinality-le: |T| ≤ n uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf int_seg_wf surject_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (|T|  \mleq{}  n  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-01_51_33
Last ObjectModification: 2015_12_26-PM-05_37_09

Theory : list_1


Home Index