Nuprl Lemma : cmp-le_wf

[T:Type]. ∀[cmp:comparison(T)]. ∀[x,y:cmp-type(T;cmp)].  (cmp-le(cmp;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  cmp-le: cmp-le(cmp;x;y) cmp-type: cmp-type(T;cmp) comparison: comparison(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cmp-type: cmp-type(T;cmp) prop: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q cmp-le: cmp-le(cmp;x;y) comparison: comparison(T) true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal-wf-T-base equal_wf equal-wf-base cmp-type_wf comparison_wf le_wf squash_wf true_wf iff_weakening_equal minus_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality universeEquality sqequalRule pertypeElimination productElimination thin equalityTransitivity hypothesis equalitySymmetry hypothesisEquality lambdaFormation because_Cache rename setElimination dependent_functionElimination independent_functionElimination extract_by_obid isectElimination intEquality applyEquality baseClosed productEquality axiomEquality cumulativity isect_memberEquality natural_numberEquality functionExtensionality minusEquality instantiate lambdaEquality imageElimination imageMemberEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[cmp:comparison(T)].  \mforall{}[x,y:cmp-type(T;cmp)].    (cmp-le(cmp;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-08_27_15
Last ObjectModification: 2017_02_27-PM-04_49_37

Theory : list_1


Home Index