Nuprl Lemma : cmp-le_wf
∀[T:Type]. ∀[cmp:comparison(T)]. ∀[x,y:cmp-type(T;cmp)].  (cmp-le(cmp;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
cmp-le: cmp-le(cmp;x;y)
, 
cmp-type: cmp-type(T;cmp)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cmp-type: cmp-type(T;cmp)
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cmp-le: cmp-le(cmp;x;y)
, 
comparison: comparison(T)
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal-wf-T-base, 
equal_wf, 
equal-wf-base, 
cmp-type_wf, 
comparison_wf, 
le_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
minus_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
universeEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
hypothesisEquality, 
lambdaFormation, 
because_Cache, 
rename, 
setElimination, 
dependent_functionElimination, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
intEquality, 
applyEquality, 
baseClosed, 
productEquality, 
axiomEquality, 
cumulativity, 
isect_memberEquality, 
natural_numberEquality, 
functionExtensionality, 
minusEquality, 
instantiate, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[cmp:comparison(T)].  \mforall{}[x,y:cmp-type(T;cmp)].    (cmp-le(cmp;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_17-AM-08_27_15
Last ObjectModification:
2017_02_27-PM-04_49_37
Theory : list_1
Home
Index