Nuprl Lemma : comb_for_sublist_wf

λT,L1,L2,z. L1 ⊆ L2 ∈ T:Type ⟶ L1:(T List) ⟶ L2:(T List) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 list: List prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  sublist_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}T,L1,L2,z.  L1  \msubseteq{}  L2  \mmember{}  T:Type  {}\mrightarrow{}  L1:(T  List)  {}\mrightarrow{}  L2:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_06_20-PM-01_22_38
Last ObjectModification: 2018_09_29-PM-00_28_16

Theory : list_1


Home Index