Nuprl Lemma : comb_for_sublist_wf
λT,L1,L2,z. L1 ⊆ L2 ∈ T:Type ⟶ L1:(T List) ⟶ L2:(T List) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
list: T List
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
sublist_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,L1,L2,z.  L1  \msubseteq{}  L2  \mmember{}  T:Type  {}\mrightarrow{}  L1:(T  List)  {}\mrightarrow{}  L2:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2019_06_20-PM-01_22_38
Last ObjectModification:
2018_09_29-PM-00_28_16
Theory : list_1
Home
Index