Nuprl Lemma : sublist_wf
∀[T:Type]. ∀[L1,L2:T List].  (L1 ⊆ L2 ∈ ℙ)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
sublist: L1 ⊆ L2
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
nat: ℕ
Lemmas referenced : 
list_wf, 
le_wf, 
nat_properties, 
lelt_wf, 
non_neg_length, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
select_wf, 
equal_wf, 
all_wf, 
subtype_rel_dep_function, 
length_wf_nat, 
increasing_wf, 
length_wf, 
int_seg_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  \msubseteq{}  L2  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_42_56
Last ObjectModification:
2016_01_15-AM-08_35_23
Theory : list_1
Home
Index