Nuprl Lemma : increasing_wf

[k:ℕ]. ∀[f:ℕk ⟶ ℤ].  (increasing(f;k) ∈ ℙ)


Proof




Definitions occuring in Statement :  increasing: increasing(f;k) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  increasing: increasing(f;k) uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf subtract_wf less_than_wf decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le add-associates nat_wf minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel2 lelt_wf add-member-int_seg2 decidable__le not-le-2 zero-add add-zero
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality dependent_set_memberEquality productElimination independent_pairFormation dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination addEquality minusEquality isect_memberEquality voidEquality intEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[f:\mBbbN{}k  {}\mrightarrow{}  \mBbbZ{}].    (increasing(f;k)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_02_10
Last ObjectModification: 2015_12_26-AM-10_56_53

Theory : int_1


Home Index