Nuprl Lemma : comparison-anti

[T:Type]. ∀[cmp:comparison(T)]. ∀[x,y:T].  ((cmp y) (-(cmp x)) ∈ ℤ)


Proof




Definitions occuring in Statement :  comparison: comparison(T) uall: [x:A]. B[x] apply: a minus: -n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T comparison: comparison(T) and: P ∧ Q squash: T prop: all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf iff_weakening_equal comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache intEquality dependent_functionElimination minusEquality functionExtensionality cumulativity natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[cmp:comparison(T)].  \mforall{}[x,y:T].    ((cmp  x  y)  =  (-(cmp  y  x)))



Date html generated: 2017_04_17-AM-08_26_35
Last ObjectModification: 2017_02_27-PM-04_47_37

Theory : list_1


Home Index