Nuprl Lemma : comparison-seq-simple-wf
∀[T:Type]. ∀[c1,c2:comparison(T)].  (comparison-seq(c1; c2) ∈ comparison(T))
Proof
Definitions occuring in Statement : 
comparison-seq: comparison-seq(c1; c2)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
comparison: comparison(T)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
comparison-seq_wf, 
subtype_rel_comparison, 
equal-wf-T-base, 
comparison_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
applyEquality, 
setEquality, 
intEquality, 
setElimination, 
rename, 
hypothesis, 
baseClosed, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[c1,c2:comparison(T)].    (comparison-seq(c1;  c2)  \mmember{}  comparison(T))
Date html generated:
2017_04_17-AM-08_28_22
Last ObjectModification:
2017_02_27-PM-04_49_29
Theory : list_1
Home
Index