Nuprl Lemma : comparison-seq-simple-wf

[T:Type]. ∀[c1,c2:comparison(T)].  (comparison-seq(c1; c2) ∈ comparison(T))


Proof




Definitions occuring in Statement :  comparison-seq: comparison-seq(c1; c2) comparison: comparison(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B comparison: comparison(T) prop: uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  comparison-seq_wf subtype_rel_comparison equal-wf-T-base comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality isect_memberEquality applyEquality setEquality intEquality setElimination rename hypothesis baseClosed independent_isectElimination lambdaEquality because_Cache sqequalRule axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[c1,c2:comparison(T)].    (comparison-seq(c1;  c2)  \mmember{}  comparison(T))



Date html generated: 2017_04_17-AM-08_28_22
Last ObjectModification: 2017_02_27-PM-04_49_29

Theory : list_1


Home Index